$7{ }^{\text {TH }}$ Yasinskyi Geometry Olympiad
 Grade 8

1. Let O be the circumcenter of triangle $A B C$ and the line $A O$ intersects segment $B C$ at point T. Assume that lines m and ℓ passing through point T are perpendicular to $A B$ and $A C$ respectively. If E is the point of intersection of m and $O B$ and F is the point of intersection of ℓ and $O C$, prove that $B E=C F$.
(Oleksii Karliuchenko)
2. Let I be the incenter of triangle $A B C . K_{1}$ and K_{2} are the points on $B C$ and $A C$ respectively, at which the inscribed circle is tangent. Using a ruler and a compass, find the center of the inscribed circle for triangle $C K_{1} K_{2}$ in the minimal possible number of steps (each step is to draw a circle or a line).
(Hryhorii Filippovskyi)
3. $A B C$ is a right triangle with $\angle C=90^{\circ}$. Let N be the middle of arc $B A C$ of the circumcircle and K be the intersection point of $C N$ and $A B$. Assume T is a point on a line $A K$ such that $T K=K A$. Prove that the circle with center T and radius $T K$ is tangent to $B C$.
(Mykhailo Sydorenko)
4. $A B C$ is an acute triangle and $A D, B E$ and $C F$ are the altitudes, with H being the point of intersection of these altitudes. Points A_{1}, B_{1}, C_{1} are chosen on rays $A D, B E$ and $C F$ respectively such that $A A_{1}=H D, B B_{1}=H E$ and $C C_{1}=H F$. Let A_{2}, B_{2} and C_{2} be midpoints of segments $A_{1} D, B_{1} E$ and $C_{1} F$ respectively. Prove that H, A_{2}, B_{2} and C_{2} are concyclic.
(Mykhailo Barkulov)
5. Let $A B C$ be a triangle and ℓ be a line parallel to $B C$ that passes through vertex A. Draw two circles congruent to the circle inscribed in triangle $A B C$ and tangent to line $\ell, A B$ and $B C$ (see picture). Lines $D E$ and $F G$ intersect at point P. Prove that P lie on $B C$ if and only if P is the midpoint of $B C$.

(Mykhailo Plotnikov)
6. Let $A B C$ be an isosceles triangle with $\angle B A C=108^{\circ}$. The angle bisector of the $\angle A B C$ intersects the circumcircle of a triangle $A B C$ at the point D. Let E be a point on segment $C B$ such that $A B=B E$. Prove that the perpendicular bisector of $C D$ is tangent to circumcircle of a triangle $A B E$.
(Bohdan Zheliabovskyi)

$7{ }^{\text {TH }}$ Yasinskyi Geometry Olympiad
 Grade 9

1. Let $B D$ and $C E$ be the altitudes of triangle $A B C$ that intersect at point H. Let F be a point on side $A C$ such that $F H \perp C E$. The segment $F E$ intersects the circumcircle of triangle $C D E$ at the point K. Prove that $H K \perp E F$.
(Matthew Kurskyi)
2. Let $B C$ and $B D$ be the tangent lines to the circle with diameter $A C$. Let E be the second point of intersection of line $C D$ and the circumscribed circle of triangle $A B C$. Prove that $C D=2 D E$.
(Matthew Kurskyi)
3. Let I be the center of the inscribed circle of the triangle $A B C$. The inscribed circle is tangent to sides $B C$ and $A C$ at points K_{1} and K_{2} respectively. Using a ruler and a compass, find the center of excircle for triangle $C K_{1} K_{2}$ which is tangent to side $C K_{2}$, in at most 4 steps (each step is to draw a circle or a line).
(Hryhorii Filippovskyi, Volodymyr Brayman)
4. Let $B E$ and $C F$ be the altitudes of acute triangle $A B C$. Let H be the orthocenter of $A B C$ and M be the midpoint of side $B C$. The points of intersection of the midperpendicular line to $B C$ with segments $B E$ and $C F$ are denoted by K and L respectively. The point Q is the orthocenter of triangle $K L H$. Prove that Q belongs to the median $A M$.
(Bohdan Zheliabovskyi)
5. Let I be the center of the cirlce inscribed in triangle $A B C$. The inscribed circle is tangent to side $B C$ at point K. Let X and Y be points on segments $B I$ and $C I$ respectively, such that $K X \perp A B$ and $K Y \perp A C$. The circumscribed circle around triangle $X Y K$ intersects line $B C$ at point D. Prove that $A D \perp B C$.
(Matthew Kurskyi)
6. An acute triangle $A B C$ is surrounded by equilateral triangles $K L M$ and $P Q R$ such that its vertices lie on the sides of these equilateral triangle as shown on the picture. Lines $P K$ and $Q L$ intersect at point D. Prove that

$$
\angle A B C+\angle P D Q=120^{\circ} .
$$

(Yurii Biletskyi)

$7{ }^{\text {Th }}$ Yasinskyi Geometry Olympiad

Grade 10-11

1. Two circles ω_{1} and ω_{2} are tangent to line ℓ at the points A and B respectively. In addition, ω_{1} and ω_{2} are externally tangent to each other at point D. Choose a point E on the smaller arc $B D$ of circle ω_{2}. Line $D E$ intersects circle ω_{1} again at point C. Prove that $B E \perp A C$.
(Yurii Biletskyi)
2. Let I be the center of the circle inscribed in triangle $A B C$ which has $\angle A=60^{\circ}$ and the inscribed circle is tangent to the side $B C$ at point D. Choose points X and Y on segments $B I$ and $C I$ respectively, such than $D X \perp A B$ and $D Y \perp A C$. Choose a point Z such that the triangle $X Y Z$ is equilateral and Z and I belong to the same half plane relative to the line $X Y$. Prove that $A Z \perp B C$.
3. Let $A B C$ be an acute triangle. Squares $A A_{1} A_{2} A_{3}$, $B B_{1} B_{2} B_{3}$ and $C C_{1} C_{2} C_{3}$ are located such that the lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ pass through the points B, C and A respectively and the lines $A_{2} A_{3}, B_{2} B_{3}, C_{2} C_{3}$ pass through the points C, A and B respectively. Prove that
(a) the lines $A A_{2}, B_{1} B_{2}$ and $C_{1} C_{3}$ intersect at one point.
(b) the lines $A A_{2}, B B_{2}$ and $C C_{2}$ intersect at one point.

> (Mykhailo Plotnikov)

4. Pick a point C on a semicircle with diameter $A B$. Let P and Q be two points on segment $A B$ such that $A P=A C$ and $B Q=B C$. The point O is the center of the circumscribed circle of triangle $C P Q$ and point H is the orthocenter of triangle $C P Q$. Prove that for all posible locations of point C, the line $O H$ is passing through a fixed point.
(Mykhailo Sydorenko)
5. Let $A B C$ be a scalene triangle. Given the center I of the inscribe circle and the points K_{1}, K_{2} and K_{3} where the inscribed circle is tangent to the sides $B C, A C$ and $A B$. Using only a ruler, construct the center of the circumscribed circle of triangle $A B C$.
(Hryhorii Filippovskyi)
6. Let $A B C$ be a scalene triangle. Let ℓ be a line passing through point B that lies outside of the triangle $A B C$ and creates different angles with sides $A B$ and $B C$. The point M is the midpoint of side $A C$ and the ponts H_{a} and H_{c} are the bases of the perpendicular lines on the line ℓ drawn from points A and C respectively. The circle circumscribing triangle $M B H_{a}$ intersects $A B$ at the point A_{1} and the circumscribed circle of triangle $M B H_{c}$ intersects $B C$ at point C_{1}. The point A_{2} is symmetric to the point A relative to the point A_{1} and the point C_{2} is symmetric to the point C_{1} relative to the point C_{1}. Prove that the lines $\ell, A C_{2}$ and $C A_{2}$ intersect at one point.

