7th Yasinskyi Geometry Olympiad Grade 8

1. Let *O* be the circumcenter of triangle *ABC* and the line *AO* intersects segment *BC* at point *T*. Assume that lines *m* and ℓ passing through point *T* are perpendicular to *AB* and *AC* respectively. If *E* is the point of intersection of *m* and *OB* and *F* is the point of intersection of ℓ and *OC*, prove that BE = CF.

(Oleksii Karliuchenko)

2. Let *I* be the incenter of triangle *ABC*. K_1 and K_2 are the points on *BC* and *AC* respectively, at which the inscribed circle is tangent. Using a ruler and a compass, find the center of the inscribed circle for triangle CK_1K_2 in the minimal possible number of steps (each step is to draw a circle or a line).

(Hryhorii Filippovskyi)

3. *ABC* is a right triangle with $\angle C = 90^\circ$. Let *N* be the middle of arc *BAC* of the circumcircle and *K* be the intersection point of *CN* and *AB*. Assume *T* is a point on a line *AK* such that *TK* = *KA*. Prove that the circle with center *T* and radius *TK* is tangent to *BC*.

(Mykhailo Sydorenko)

4. *ABC* is an acute triangle and *AD*, *BE* and *CF* are the altitudes, with *H* being the point of intersection of these altitudes. Points A_1 , B_1 , C_1 are chosen on rays *AD*, *BE* and *CF* respectively such that $AA_1 = HD$, $BB_1 = HE$ and $CC_1 = HF$. Let A_2 , B_2 and C_2 be midpoints of segments A_1D , B_1E and C_1F respectively. Prove that H, A_2 , B_2 and C_2 are concyclic.

(Mykhailo Barkulov)

5. Let *ABC* be a triangle and ℓ be a line parallel to *BC* that passes through vertex *A*. Draw two circles congruent to the circle inscribed in triangle *ABC* and tangent to line ℓ , *AB* and *BC* (see picture). Lines *DE* and *FG* intersect at point *P*. Prove that *P* lie on *BC* if and only if *P* is the midpoint of *BC*.

(Mykhailo Plotnikov)

6. Let *ABC* be an isosceles triangle with $\angle BAC = 108^{\circ}$. The angle bisector of the $\angle ABC$ intersects the circumcircle of a triangle *ABC* at the point *D*. Let *E* be a point on segment *CB* such that *AB* = *BE*. Prove that the perpendicular bisector of *CD* is tangent to circumcircle of a triangle *ABE*.

(Bohdan Zheliabovskyi)

Ŕ

December 10, 2023

7th Yasinskyi Geometry Olympiad Grade 9

1. Let *BD* and *CE* be the altitudes of triangle *ABC* that intersect at point *H*. Let *F* be a point on side *AC* such that $FH \perp CE$. The segment *FE* intersects the circumcircle of triangle *CDE* at the point *K*. Prove that $HK \perp EF$.

(Matthew Kurskyi)

2. Let *BC* and *BD* be the tangent lines to the circle with diameter *AC*. Let *E* be the second point of intersection of line *CD* and the circumscribed circle of triangle *ABC*. Prove that CD = 2DE.

(Matthew Kurskyi)

3. Let *I* be the center of the inscribed circle of the triangle *ABC*. The inscribed circle is tangent to sides *BC* and *AC* at points K_1 and K_2 respectively. Using a ruler and a compass, find the center of excircle for triangle CK_1K_2 which is tangent to side CK_2 , in at most 4 steps (each step is to draw a circle or a line).

(Hryhorii Filippovskyi, Volodymyr Brayman)

4. Let *BE* and *CF* be the altitudes of acute triangle *ABC*. Let *H* be the orthocenter of *ABC* and *M* be the midpoint of side *BC*. The points of intersection of the midperpendicular line to *BC* with segments *BE* and *CF* are denoted by *K* and *L* respectively. The point *Q* is the orthocenter of triangle *KLH*. Prove that *Q* belongs to the median *AM*.

(Bohdan Zheliabovskyi)

5. Let *I* be the center of the cirlce inscribed in triangle *ABC*. The inscribed circle is tangent to side *BC* at point *K*. Let *X* and *Y* be points on segments *BI* and *CI* respectively, such that $KX \perp AB$ and $KY \perp AC$. The circumscribed circle around triangle *XYK* intersects line *BC* at point *D*. Prove that $AD \perp BC$.

(Matthew Kurskyi)

6. An acute triangle ABC is surrounded by equilateral triangles KLM and PQR such that its vertices lie on the sides of these equilateral triangle as shown on the picture. Lines PK and QL intersect at point D. Prove that

$$\angle ABC + \angle PDQ = 120^{\circ}.$$

(Yurii Biletskyi)

December 10, 2023

7th Yasinskyi Geometry Olympiad Grade 10-11

1. Two circles ω_1 and ω_2 are tangent to line ℓ at the points A and B respectively. In addition, ω_1 and ω_2 are externally tangent to each other at point D. Choose a point E on the smaller arc BD of circle ω_2 . Line DE intersects circle ω_1 again at point C. Prove that $BE \perp AC$. (*Yurii Biletskyi*)

2. Let *I* be the center of the circle inscribed in triangle *ABC* which has $\angle A = 60^{\circ}$ and the inscribed circle is tangent to the side *BC* at point *D*. Choose points *X* and *Y* on segments *BI* and *CI* respectively, such than $DX \perp AB$ and $DY \perp AC$. Choose a point *Z* such that the triangle *XYZ* is equilateral and *Z* and *I* belong to the same half plane relative to the line *XY*. Prove that $AZ \perp BC$. (*Matthew Kurskyi*)

3. Let *ABC* be an acute triangle. Squares $AA_1A_2A_3$, $BB_1B_2B_3$ and $CC_1C_2C_3$ are located such that the lines A_1A_2 , B_1B_2 , C_1C_2 pass through the points *B*, *C* and *A* respectively and the lines A_2A_3 , B_2B_3 , C_2C_3 pass through the points *C*, *A* and *B* respectively. Prove that

(a) the lines AA₂, B₁B₂ and C₁C₃ intersect at one point.
(b) the lines AA₂, BB₂ and CC₂ intersect at one point. (Mykhailo Plotnikov)

4. Pick a point *C* on a semicircle with diameter *AB*. Let *P* and *Q* be two points on segment *AB* such that AP = AC and BQ = BC. The point *O* is the center of the circumscribed circle of triangle *CPQ* and point *H* is the orthocenter of triangle *CPQ*. Prove that for all possible locations of point *C*, the line *OH* is passing through a fixed point. (*Mykhailo Sydorenko*)

5. Let *ABC* be a scalene triangle. Given the center *I* of the inscribe circle and the points K_1 , K_2 and K_3 where the inscribed circle is tangent to the sides *BC*, *AC* and *AB*. Using only a ruler, construct the center of the circumscribed circle of triangle *ABC*. (*Hryhorii Filippovskyi*)

6. Let *ABC* be a scalene triangle. Let ℓ be a line passing through point *B* that lies outside of the triangle *ABC* and creates different angles with sides *AB* and *BC*. The point *M* is the midpoint of side *AC* and the ponts H_a and H_c are the bases of the perpendicular lines on the line ℓ drawn from points *A* and *C* respectively. The circle circumscribing triangle *MBH*_a intersects *AB* at the point A_1 and the circumscribed circle of triangle *MBH*_c intersects *BC* at point C_1 . The point A_2 is symmetric to the point *A* relative to the point A_1 and the point C_2 is symmetric to the point C_1 . Prove that the lines ℓ , *AC*₂ and *CA*₂ intersect at one point. (*Yana Kolodach*)

December 10, 2023